
(S)LOC Count Evolution for Selected OSS Projects

Tik Report 315

Arno Wagner

arno@wagner.name

December 11, 2009

Abstract

We measure the dynamics in project code size for several large open
source projects, given as lines of code. Lines of codes are counted using
two different methods. First, raw LOCs, which count every line in the
decompressed source distribution package and second, SLOCs, as defined
by David A. Wheeler’s ’SLOCCount’. It turns out that the results are
substantially different but show similar trends in many cases. A primary
result is that most projects have had steadily increasing code size, with
the associated increased project complexity. We also briefly discuss the
relevance of LOCs in comparison to other code complexity measures.

1 Introduction

Software complexity metrics are an important factor in many investigations.
They are used for cost and time estimation in project planning, for the estima-
tion on how many coding errors (bugs) and vulnerabilities are to be expected
in a project.

There are numerous metrics in use and even a simple measure such as ”lines
of code” (LOCs) is used in vastly different flavours. Our goal is to measure the
LOC-based complexity of several open source projects over a longer period of
time with exactly defined and documented metrics. For this we use two popular
counting methods, namely raw LOCs and SLOCs. While these measures have
limited applicability when comparing two different projects, they seem well
suited to document the evolution of a single project over time. This report is
structured as follows: In Section 2 we define and compare the two different LOC
measurements we are using and compare LOCs to other complexity measures.
Section 3 presents the measurement results for four large open source projects,
spanning a time period of up to 10 years. The remainder of the report surveys
related work and gives concluding remarks. The exact numerical LOC counts
found are documented in the appendix.

2 Lines of Code: Definition and Properties

2.1 Raw LOCs vs SLOCs

Raw LOCs are derived in the simplest possible manner, namely by taking the
whole source distribution package of a project and counting every line ending in
it. This is typically done by using the Unix command ”wc”on the decompressed
tar file. While this measure seems overly simplistic, it is used in practice.

SLOCs [13] were defined by David A. Wheeler in order to get a more real-
istic line measurement. They are measured with the tool sloccount. Primary
improvements are duplicate detection, separation of the results into different
programming languages and identification of documentation in file-embedded
as well as separate file format. Note that some people use SLOC as a synonym
for LOC. In this report, SLOC always means SLOC as defined by Wheeler.

Naturally, raw LOC counts will be higher than SLOC counts. There is a
tendency that whenever the sheer size of a project is stressed, raw LOCs are
used, e.g. in Table 4 of [10]. We believe that this is the wrong approach. Es-
pecially for documentation-heavy projects or when documentation is suddenly
included in the source distribution package to a far larger degree than before,
raw LOC counts distort the actual project evolution. Our measurements show
that in some cases project complexity measures based on raw LOCs can be
quite different from those based on SLOCs. The problem is made worse by our
observation that many publicly stated LOC counts are missing a description on
how they were obtained. Still, our measurement shows that for 3 out of 4 cases
we examined, raw LOCs actually closely follow the same trends as SLOCs over
the project duration. The one deviation (Apache) is likely due to a change in
the documentation style and inclusion in the source distribution package.

One factor SLOC cannot account for is code compactness. Due to different
coding styles code with the same functionality and inherent complexity can be
distributed over a larger or smaller number of lines. If a project has a style guide
that is followed by the developers this variation can be reduced between different
developers. This makes LOC counts a good tool to estimate project evolution
over time. Comparing LOC counts of different projects is still problematic.

A second source of different LOC counts for similar functionality can be
dues to use of different programming languages. For example things that can
be expressed in Perl in very few lines may take hundreds of lines of code in C.
Comparisons between different languages based on LOC counts are therefore
highly problematic and should be avoided.

2.2 LOC Derived Complexity Measures

To infer actual complexity, LOC counts are often used as input into more com-
plex models. One such model is the the Constructive Cost Model (COCOMO)
[6] by Barry W. Boehm. The basic COCOMO estimates overall project effort
E as

E[Man-Months] = a ∗ (LOC/1000)b

2

0

2

4

6

8

10

12

14

 16

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

M
ill

io
n

L
in

es

raw LOC
SLOC

Figure 1: FreeBSD Code Size

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

R
el

at
iv

e
G

ro
w

th

raw LOC
SLOC

Figure 2: FreeBSD Normalized Code Growth

with a ∈ {2.4 . . . 3.6} and b ∈ {1.05 . . . 1.2} depending on team experience and
size. The intermediate COCOMO also takes into account other project factors
to modify factor a, while b is left unchanged. The COCOMO has limited
accuracy [9] but is still suitable for rough estimates. Its claim that effort raises
exponentially with the project size is not in doubt. An improved version is the
COCOMO II [5, 2], which also takes aspects like code reuse and project state
into account and offers better accuracy later in the design process.

2.3 Alternatives to LOCs

LOC counts suffer from being a simplistic measure. They do not take structural
complexity into account. An alternative measure is Cyclomatic Complexity [11],
which is based on the number of ”decision points” in the code. Newer research
found empirical evidence of a linear relationship between LOC counts and Cy-
clomatic Complexity [8]. This indicates that the LOC number of a software
project is a significantly more meaningful than its simple nature suggests.

3

 0

2

4

6

8

10

12

2004 2005 2006 2007 2008 2009 2010

M
ill

io
n

L
in

es

raw LOC
SLOC

Figure 3: Linux Kernel Code Size

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

2004 2005 2006 2007 2008 2009 2010

R
el

at
iv

e
G

ro
w

th

raw LOC
SLOC

Figure 4: Linux Kernel Normalized Code Growth

3 Findings

For each project we give time plots for both raw LOCs and SLOCs in absolute
and normalized form. The normalized forms are then compared in Figures 11
and 12. The exact numerical values are stated in Appendix A. The raw LOC
numbers were obtained by running the Linux wc command on the decompressed
tar archive. Sample tests showed that the results differ very little from those
obtained when completely unpacking the tar archives, running wc on each in-
dividual file and then adding the individual counts. SLOCs were obtained by
running sloccount on the unpacked distribution archive and taking the Total

Physical Source Lines of Code (SLOC) output number. Note that running
several instances of sloccount in parallel requires special attention, see section
3.5.

3.1 FreeBSD

The FreeBSD source packages were obtained from [1]. The packages come
in a broken-down compressed tar format, that contains the complete source
distribution but no binaries. Most of the source code is C. The LOC counts we

4

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1998 2000 2002 2004 2006 2008 2010

M
ill

io
n

L
in

es

raw LOC v1.3
raw LOC v2.0
raw LOC v2.2

SLOC v1.3
SLOC v2.0
SLOC v2.2

Figure 5: Apache Web Server Code Size

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

1998 2000 2002 2004 2006 2008 2010

R
el

at
iv

e
G

ro
w

th

raw LOC v1.3
SLOC v1.3

Figure 6: Apache 1.3 Web Server Normalized Code Growth

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

1998 2000 2002 2004 2006 2008 2010

R
el

at
iv

e
G

ro
w

th

raw LOC v2.0
SLOC v2.0

Figure 7: Apache 2.0 Web Server Normalized Code Growth

 0.9

1.0

1.1

1.2

1998 2000 2002 2004 2006 2008 2010

R
el

at
iv

e
G

ro
w

th

raw LOC v2.2
SLOC v2.2

Figure 8: Apache 2.2 Web Server Normalized Code Growth

5

obtained are represented in Figures 1 and 2. They show a steady, near-linear,
increase over time, with an almost constant ratio between raw LOC and SLOC
numbers.

3.2 The Linux Kernel

The kernel packages used are stock kernel sources from kernel.org. We only
measure 2.6.x versions, i.e. the respective initial kernel releases. Measurements
on patched sub-releases are problematic, because they may actually have been
released later than the next initial release kernel and they can contain a smaller
or larger amount of back-ported code from later kernels. We therefore believe
that measurements restricted to initial releases give the most realistic results.

The LOC value plots are given in Figure 3 and 4. Kernel growth accelerated
in 2008. It is too early to see whether this was a temporary phenomenon or
represents a persistent change. As for FreeBSD, raw LOC and SLOC changes
are very similar for the Linux Kernel.

3.3 The Apache Web Server

The Apache sources are from the Apache archive download site at [1]. We did
measurements on versions 1.3.x, 2.0.x and 2.2.x. Note that Apache 2.0.32 is a
beta release and that 2.0.15 is an alpha release. The LOC plots for Apache 1.3,
2.0 and 2.2 are given in in graphical from in Figure 5 for the absolute values
and in Figures 6, 7 and 8 in normalized form.

As the plots clearly show, there is a significant difference in the evolution
of raw LOCs compared to SLOCs for the Apache web server. While the SLOC
counts for all three versions increase slowly initially and then level off, the raw
LOC counts show a much less steady behaviour with a sharp increase for version
2.0 until 2005 and a reduction afterwards, before getting constant. Version 2.2.
has a more steady raw LOC development, but the raw LOC count remains far
higher than the SLOC count.

The most likely explanation for the raw LOC and SLOC differences is that
the amount of documentation shipped with the distribution package was signif-
icantly increased with the development of the 2.0.x Apache versions, and then
kept up with the 2.2.x releases. The example of the Apache web server shows
that raw LOC counts can be quite deceiving with regard to code growth.

3.4 The Firefox Web Browser

The Firefox source packages were obtained from the Mozilla download server
at [3]. The LOC plots are given in Figures 9 and 10. Surprisingly the SLOC
numbers stayed nearly constant for Firefox in the measurement interval. We
can only speculate that this is due to new functionality being implemented in
the form of plug-ins that are not distributed with the browser source package.

6

 0

1

2

3

4

5

6

7

8

2005 2006 2007 2008 2009 2010

M
ill

io
n

L
in

es

Firefox Source Code Size

raw LOC
SLOC

Figure 9: Firefox Web Browser Code Size

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

2005 2006 2007 2008 2009 2010

R
el

at
iv

e
G

ro
w

th

Firefox Source Code Size

raw LOC
SLOC

Figure 10: Firefox Web Browser Normalized Code Growth

3.5 Problems Found During Measurement

sloccount stores temporary data in ${HOME}/.slocdata, but unfortunately
fails to protect this directory against multiple use by two or more sloccount

instances. Running two or more instances of sloccount in parallel results in
random, hard to debug failures and sometimes in grossly wrong results. This
either has to be avoided, or all instances running in parallel have to be given
their own data directories using the -datadir option. It should be noted that
sloccount leaves cleaning up the data directory to the user.

4 Conclusion

4.1 Related Work

Other code size count statistics have been published. For example [4] gives
eLOC count for specific versions of several large Open Source projects. The
authors of [10] use raw LOCs to give the size of the Linux kernel. David A.
Wheeler gives SLOC counts for a complete Linux distribution (Red Hat Linux
7.1, vintage 2001) in [14]. This inspired a number of follow-up measurements

7

1998 2000 2002 2004 2006 2008 2010

R
el

at
iv

e
G

ro
w

th
, E

ac
h

R
an

ge
: 0

.9
 -

 2
.4

FreeBSD raw LOC

Linux raw LOC

Apache raw LOC
 v1.3
 v2.0
 v2.2

Firefox raw LOC

Figure 11: Normalized raw LOC Code Growth Comparison

1998 2000 2002 2004 2006 2008 2010

R
el

at
iv

e
G

ro
w

th
, E

ac
h

R
an

ge
: 0

.9
 -

 2
.4

FreeBSD SLOC

Linux SLOC

Apache SLOC
 v1.3
 v2.0
 v2.2

Firefox SLOC

Figure 12: Normalized SLOC Code Growth Comparison

8

of specific versions of OSS projects or distributions, see [12].
The only long-term study of code size dynamics we are aware of is [7], were

the aggregated growth of 5122 OSS projects on SourceForge for the time from
1995 to 2006 was measured in SLOC. It found an overall exponential growth.

4.2 Discussion

Our measurements show a steady increase in size for several large and widely
used open source projects. The exception is the Firefox web browser, that has
a slowly increasing raw LOC size, but an almost constant SLOC code size over
a period of 4 years. A possible explanation is a shift of functionality to plug-ins
that are not distributed directly with the core browser source code. For the
other projects a significant increase in size, and hence code complexity, can be
observed.

We also found that while raw LOC counts can sometimes precisely rep-
resent relative project code growth they are sensitive to inclusion of project
documentation in the source distribution package and can give severely mis-
leading numbers. For this reasons, SLOC or a similar method should be used
to estimate code size and raw LOC counts should be avoided.

References

[1] Apache download archive. http://archive.apache.org/dist/httpd/.
[2] Cocomo ii. http://sunset.usc.edu/csse/research/COCOMOII/cocomo_main.

html. Last visited November, 2009.
[3] Mozilla download server. ftp://ftp.mozilla.org/pub/mozilla.org/firefox/

releases/.
[4] RSM Metrics of Popular Software Programs. http://msquaredtechnologies.

com/m2rsm/rsm_software_project_metrics.htm. Last visited November, 2009.
[5] B. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Horowitz,

R. Madachy, D. J. Reifer, and B. Steece. Software cost estimation with COCOMO
II. Prentice-Hall, 2000.

[6] B. W. Boehm. Software engineering economics. Prentice-Hall, 1981.
[7] A. Deshpande and D. Riehle. The Total Growth of Open Source. In Proceedings

of the Fourth Conference on Open Source Systems (OSS 2008). Springer Verlag,
2008.

[8] G. Jay, J. E. Hale, R. K. Smith, D. Hale, N. A. Kraft, and C. Ward. Cyclomatic
complexity and lines of code: empirical evidence of a stable linear relationship.
Journal of Software Engineering and Applications (JSEA), 2009.

[9] C. F. Kemerer. An empirical validation of software cost estimation models. Com-
munications of the ACM, May 1987.

[10] G. Kroah-Hartman, J. Corbet, and A. McPherson. Linux Kernel Develop-
ment, August 2009 update. available from http://www.linuxfoundation.org/

publications, 2009. Published by the Linux Foundation.
[11] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineer-

ing, 1976.
[12] D. A. Wheeler. Counting Source Lines of Code (SLOC). http://www.dwheeler.

com/sloc/. Last visited November, 2009.
[13] D. A. Wheeler. SLOCCount. http://www.dwheeler.com/sloccount/. Last

visited November, 2009.

9

[14] D. A. Wheeler. More Than a Gigabuck: Estimating GNU/Linux’s Size. http://
www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html, 2002. Last visited
November, 2009.

10

A Detailed LOC Counts

Version Date raw LOC SLOC

3.1 1999-02-17 6425285 2983053

4.0 2000-03-21 7637813 3575773

4.3 2001-04-21 8323520 3858150

4.5 2002-01-28 8611733 3995585

5.0 2003-01-16 9808358 4320407

5.2 2004-01-11 10452114 4618569

5.4 2005-05-08 12255382 5312235

6.0 2005-11-03 12545630 5498400

6.1 2006-05-07 12796877 5598105

6.2 2007-01-12 13048819 5708606

7.0 2008-02-24 14431462 6343397

7.1 2009-01-01 14784426 6508506

Table 1: FreeBSD (S)LOC counts

Version Date raw LOC SLOC

2.6.0 2003-12-18 5929913 3816370

2.6.1 2004-01-09 5919671 3797257

2.6.2 2004-02-04 6008957 3860620

2.6.3 2004-02-18 6056561 3903707

2.6.4 2004-03-11 6105182 3935151

2.6.5 2004-04-04 6149724 3964541

2.6.6 2004-05-10 6218461 4008692

2.6.7 2004-06-16 6236264 4017682

2.6.8 2004-08-14 6333645 4076622

2.6.9 2004-10-18 6463002 4147093

2.6.10 2004-12-24 6495542 4176875

2.6.11 2005-03-02 6624076 4257157

2.6.12 2005-06-17 6777861 4356161

2.6.13 2005-08-29 6988801 4496659

2.6.14 2005-10-28 7143234 4609589

2.6.15 2006-01-03 7290071 4697435

2.6.16 2006-03-20 7480063 4818320

2.6.17 2006-06-18 7588015 4886152

2.6.18 2006-09-20 7752847 4968235

2.6.19 2006-11-29 7976222 5111085

2.6.20 2007-02-04 8102534 5195239

2.6.21 2007-04-26 8246518 5284774

2.6.22 2007-07-08 8499411 5445218

2.6.23 2007-10-09 8566607 5497052

2.6.24 2008-01-24 8859684 5682749

2.6.25 2008-04-17 9232542 5913441

2.6.26 2008-07-13 9411791 6015867

2.6.27 2008-10-09 9630024 6133830

2.6.28 2008-12-24 10115663 6450761

2.6.29 2009-03-23 10930803 6958954

2.6.30 2009-06-10 11557330 7323310

2.6.31 2009-09-09 11966483 7581069

Table 2: Linux Kernel (S)LOC counts

Version Date raw LOC SLOC

1.3.0 1998-06-05 137800 50712

1.3.1 1998-07-22 140609 52139

1.3.2 1998-09-21 144393 53598

1.3.3 1998-10-09 145214 54000

1.3.4 1999-01-10 151376 55778

1.3.6 1999-03-23 155565 57147

1.3.9 1999-08-19 175888 69683

1.3.11 2000-01-22 186657 72370

1.3.12 2000-02-25 187163 72517

1.3.14 2000-10-10 197723 75268

1.3.17 2001-01-29 204752 76128

1.3.19 2001-02-28 208633 75980

1.3.20 2001-05-15 214979 76466

1.3.22 2001-10-09 239025 77893

1.3.23 2002-01-24 248604 78625

1.3.24 2002-03-21 246255 79830

1.3.27 2002-10-03 255910 80392

1.3.28 2003-07-17 264314 81089

1.3.29 2003-10-24 268915 81137

1.3.31 2004-05-11 276415 82149

1.3.32 2004-10-21 276794 82314

1.3.33 2004-10-28 276632 82325

1.3.34 2005-10-17 277743 82481

1.3.35 2006-04-24 279274 82607

1.3.36 2006-05-17 279450 82534

1.3.37 2006-07-27 279309 82526

1.3.39 2007-09-06 280793 82923

1.3.41 2008-01-17 280329 82603

Table 3: Apache 1.3 (S)LOC counts

Version Date raw LOC SLOC

2.0.15 2001-03-25 390164 123642

2.0.32 2002-02-14 467406 162540

2.0.35 2002-04-06 494125 171025

2.0.36 2002-05-01 572745 167244

2.0.39 2002-06-18 541670 170972

2.0.40 2002-08-09 562212 173366

2.0.40 2002-08-09 562212 173366

2.0.42 2002-09-19 588537 176743

2.0.43 2002-10-03 591149 178864

2.0.44 2003-01-18 638078 181144

2.0.45 2003-03-31 669498 183073

2.0.46 2003-05-28 733980 184721

2.0.47 2003-07-07 712578 184123

2.0.48 2003-10-24 730244 185183

2.0.49 2004-03-18 731918 187832

2.0.50 2004-06-29 764540 188573

2.0.51 2004-09-15 763639 190487

2.0.52 2004-09-28 779206 190535

2.0.53 2005-02-07 835689 192191

2.0.54 2005-04-11 842893 192540

2.0.55 2005-10-10 726140 193444

2.0.58 2006-04-27 714459 194553

2.0.59 2006-07-27 715738 194266

2.0.61 2007-09-06 722264 195392

2.0.63 2008-01-17 723272 195392

Table 4: Apache 2.0 (S)LOC counts

11

Version Date raw LOC SLOC

2.2.0 2005-11-30 788634 222029

2.2.2 2006-04-22 779381 222631

2.2.3 2006-07-27 777676 222728

2.2.4 2007-01-06 782621 223688

2.2.6 2007-09-06 789395 225438

2.2.8 2008-01-17 800087 227133

2.2.9 2008-06-13 821917 238769

2.2.10 2008-10-14 836881 240374

2.2.11 2008-12-13 843579 240557

2.2.12 2009-07-27 852451 246981

2.2.13 2009-08-06 853515 241716

2.2.14 2009-09-23 817829 242365

Table 5: Apache 2.2 (S)LOC counts

Version Date raw LOC SLOC

1.0 2004-11-09 5712472 2482532

1.5 2005-11-29 5980193 2677615

2.0 2006-10-24 6218536 2767806

3.0 2008-06-17 6390796 2516373

3.5 2009-06-29 7239320 2624988

Table 6: Firefox (S)LOC counts

12

